
Remote TCP Connection Offload
Steven W. D. Chien*, Shuo Li*, Tianyi Gao, Michio Honda

University of Edinburgh

NetDev 0x19, Zagreb

100 Gbps

25 Gbps 25 Gbps 25 Gbps ….

GET /data HTTP/1.1

…

HTTP 200 OK

Problem #1
100 Gbps

Problem #1

25 Gbps

100 Gbps

Problem #2

OSD OSDOSD
GW

S3

OSD

Problem #2

OSD OSDOSD
GW

HTTP GET

OSD

Problem #2

OSD OSDOSD
GW

HTTP GET

OSD

Problem #2

OSD OSDOSD
GW

HTTP GET

OSD

Problem #2

OSD OSDOSD
GW

HTTP OK

OSD

Problem #2

OSD OSDOSD
GW OSD

Problem #2

OSD OSDOSD
GW OSD

Options…

● L7 Load Balancer
○ Request oriented

○ L7 Proxy bandwidth - application level

● Splicing

○ Connection oriented

○ L7 Proxy bandwidth

○ Can’t touch the payload

○ Maybe require smart NIC for high performance

Options…

● Content Aware Routing

○ Limited request response size

○ No encryption

○ Requires programmable switch

● Connection Migration

○ Request oriented

○ Line rate performance

○ Requires programmable switch

XO - Crossover

Requirements & Approaches

● No special hardware needed

○ Eliminate the need of programmable switch

● Transparency

○ Supports diverse packet filter methods

○ Reuse existing facilities e.g. eBPF+clsact , TC-Flower, …

● High-Performance

○ Unleash full bandwidth utilization through direct server response (DSR)

TCP Connection State Offload

Challenge #1

● Connection migration requires many non-atomic operations
○ TCP/TLS connection serialization (many syscalls)
○ NIC configuration (many syscalls and device configuration)
○ Inter-host signalling (many RPCs)

setsockopt(TCP_REPAIR)
ktls_serialize()
getsockopt(queue)
getsockopt(seq_no)
…

Challenge #1

● Connection migration requires many non-atomic operations
○ TCP/TLS connection serialization (many syscalls)
○ Forwarding and NIC configuration (many syscalls and device configuration)
○ Inter-host signalling (many RPCs)

Netlink
TCA_CLS_FLAGS_SKIP_SW/HW…
TCA_FLOWER_…
TCA_FLOWER_ACT

…

Challenge #1

● Connection migration requires many non-atomic operations
○ TCP/TLS connection serialization (many syscalls)
○ NIC configuration (many syscalls and device configuration)
○ Inter-host signalling (many RPCs)

Host 0 Host 1

handoff()
ready()

NIC

also_ready()

actually_ready()

Challenge #2

● Ingress and egress packets can break the connection
○ A socket is gone as soon as entering TCP_REPAIR mode
○ Treats incoming packets as error and issue TCP_RST

Backend BackendFrontend

NICNIC

ConnConn

Connection is gone, but NIC
configuration is not done yet

RST

HTTP GET

TCP+TLS handshake

Client Server A Server BOffload
Protocol

HTTP GET

TCP+TLS handshake

Client Server A Server B

Request offload

Block incoming traffic

Serialize TCP+TLS states

Offload
Protocol

Prepare to offload

HTTP GET

TCP+TLS handshake

Client Server A Server B

Request offload

Block incoming traffic

Serialize TCP+TLS states

Deserialize TCP+TLS states

Acknowledge offload

Insert src rewrite rule

Offload
Protocol

Target receives
offloaded connection

Block incoming traffic

Unblock incoming traffic

HTTP GET

TCP+TLS handshake

Client Server A Server B

Request offload

Block incoming traffic

Serialize TCP+TLS states

Offload
Protocol

Owner Ready

Acknowledge offload

Apply redirection rule

Owner ReadyUnblock incoming traffic

Get ready to
forward packets

Deserialize TCP+TLS states
Insert src rewrite rule

Block incoming traffic

Unblock incoming traffic

HTTP GET

TCP+TLS handshake

Client Server A Server B

Request offload

Block incoming traffic

Serialize TCP+TLS states

Acknowledge offload

Apply redirection rule

HTTP OK

Offload
Protocol

Owner ReadyUnblock incoming traffic

Server B Serves the Req

Deserialize TCP+TLS states
Insert src rewrite rule

Block incoming traffic

Unblock incoming traffic

HTTP GET

TCP+TLS handshake

Client Server A Server B

Request offload

Block incoming traffic

Serialize TCP+TLS states

Acknowledge offload

Apply redirection rule

HTTP OK

Offload
Protocol

HTTP GET
HTTP OK

Owner ReadyUnblock incoming traffic

Server B serves
client from now on

Deserialize TCP+TLS states
Insert src rewrite rule

Block incoming traffic

Unblock incoming traffic

HTTP GET

TCP+TLS handshake
Client Server A Server B

HANDOFF RPC

Block flow
Serialize TCP + TLS state

Deserialize TCP + TLS state

READY RPC
Insert redirection rule

Insert src rewrite rule

HTTP OK

15 + 3 μs

HTTP GET

Block flow
Serialize TCP + TLS state

HANDOFF msg

Deserialize TCP + TLS state

Remove redirection rule END RPC

Remove src rewrite & unblock
flow

Block flow

Unblocking

Block flow

Unblocking after deserialize

5 μs

ebpf : 4 μs
TC-hw : 35627 - 280
(stable at average: 320)
TC-non-blocking : 31μs

4 μs
42 + 20 μs

4 μs
4 μs (ebpf)

74 μs

39 + 20 μs

ebpf : 3 μs
TC-hw :33712 - 363 (jumpy)
TC-non-blocking :
31 or 60075μs (jumpy)

READY for sending ok

Offload

Return

eBPF = FAST!
HW-TC = …

Operation (μs) Rate (Mpps) Latency (μs)

Insert Remove 64B 1500B 64B 1500B

eBPF (tc) 4.01 3.77 0.79 0.78 21.06 22.42

eBPF (XDP) 38.31 7.41 6.65 2.07 16.52 18.45

TC (CX5) 476 404 33.01 2.07 8.26 9.89

TC (CX7) 2143 1134 33.08 2.07 8.41 9.97

TC (Agilio) 68 65 22.12 2.07 19.77 20.58

:)

:(

HW-SW Hybrid Packet Redirection

Redirection Rule

eBPF

Asynchronous

Synchronous

redirecting

rule inserting

rule inserted

HW-SW Hybrid Packet Redirection

Redirection Rule

eBPF

TC-hw

Asynchronous

Synchronous

redirecting

rule inserting

rule inserted

rule inserting

Use eBPF-based redirection until the HW one is activated

HW-SW Hybrid Packet Redirection

Redirection Rule

eBPF

TC-hw

eBPF

TC-hwTC-hw rule insertion
completed

Asynchronous

Synchronous

redirecting

redirecting

rule inserting

rule inserted

rule inserting rule inserted

Use eBPF-based redirection until the HW one is activated

● Insert HW rules with background thread
○ Returns immediately after eBPF

Issued Netlink request cannot be cancelled!!

One more small problem …
 int sendq_len, unsentq_len, recvq_len;
 ret = ioctl(fd, SIOCOUTQ, &sendq_len);
 assert(ret == 0);

…………

 const int peek = MSG_PEEK | MSG_DONTWAIT;
 uint8_t *sndbuf = NULL;
 if (sendq_len)
 {
 sndbuf = calloc(1, sendq_len + 1);
 assert(sndbuf != NULL);
 ret = recv(fd, sndbuf, sendq_len + 1, peek);
 assert(ret == sendq_len);
 }

Check if TCP queues are empty…

One more small problem …
 int sendq_len, unsentq_len, recvq_len;
 ret = ioctl(fd, SIOCOUTQ, &sendq_len);
 assert(ret == 0);

…………

 const int peek = MSG_PEEK | MSG_DONTWAIT;
 uint8_t *sndbuf = NULL;
 if (sendq_len)
 {
 sndbuf = calloc(1, sendq_len + 1);
 assert(sndbuf != NULL);
 ret = recv(fd, sndbuf, sendq_len + 1, peek);
 assert(ret == sendq_len);
 }

Preserve them…

One more small problem …

Need kTLS support for
TCP_REPAIR socket…

Evaluation

Frontend BackendBackend Backend Backend

25 Gbps

100 Gbps

Evaluation

Frontend BackendBackend Backend Backend

25 Gbps

100 Gbps

Socket

NIC

Evaluation

Frontend BackendBackend Backend Backend

25 Gbps

100 Gbps

Socket Socket

NIC NIC

Offload TCP connection…

Evaluation

Frontend BackendBackend Backend Backend

25 Gbps

100 Gbps

Socket Socket

NIC NIC

Evaluation

Frontend BackendBackend Backend Backend

25 Gbps

100 Gbps

Socket

NIC NIC

Terminate offload…

Best CaseWorst Case

NGINX

NGINX Integration

● Implementing NGINX as an HTTP module
○ Reuse event loop
○ Reuse HTTP module pipeline
○ Flexible offload and return policies
○ Minimal modification to core NGINX to track connection data

NGINX Integration

 handoff_ifname enp8s0f0np0;
 handoff_freq 1000; # 0 = round robin
 handoff_target 192.168.11.11 79;
 handoff_target 192.168.11.33 79;
 handoff_target 192.168.11.31 79;
 handoff_target 192.168.11.53 79;

Specify backends

NGINX Integration
 server {
 listen 80;
 location / {
 handoff_out;
 }
 }

 server {
 listen 79;
 location / {
 handoff_in;
 }
 }

Frontend

Backend / Control

NGINX Integration

1. Receiving incoming TCP conn via handoff_out port, and HTTP request

2. Serialize socket, open connection to a backend via handoff_in port

3. Execute offload protocol

4. Backend restores the socket, and mimics an accept

5. Future HTTP requests all handled by normal HTTP module code path

Link Speed

Imbalance

Ceph Integration

Ceph Integration

Lookup object
Location and read

Ceph Integration

Read data from storage

Ceph Integration

Relay reply to client

Ceph Integration

Protocol translate: no splicing, no end-to-end encryption!

Ceph Integration

● Implementing XO-Ceph S3 Object Gateway
○ Offloads connection to OSD that stores the requested object
○ Offload target driven by object location
○ Improves bandwidth usage and data locality
○ Implements hybrid eBPF+TC-HW offload

17% better with hybrid rule insertion

Skew Balanced

Conclusion

● Best of both worlds between L4 and L7 load balancing
○ Connections does not permanently stays at backend
○ No L7 relaying at frontend

● Made TCP connection offload practical
○ Designed offload protocol
○ Eliminate need for for special hardware
○ Takes advantage of fast eBPF map update, and opportunistically use HW offload

● Real World Applications
○ Nginx
○ Ceph

Please reach out for new use cases and application ♡

